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Thermodynamics and statistical mechanics of frozen systems in inherent states

Annalisa Fierro, Mario Nicodemi,* and Antonio Coniglio
Dipartimento di Fisica, Universita` di Napoli ‘‘Federico II,’’ INFM, Unità di Napoli, Complesso Universitario Monte Sant’Angelo,

Via Cinthia, I-80126 Napoli, Italy
~Received 5 August 2002; published 10 December 2002!

We discuss a statistical mechanics approach in the manner of Edwards to the ‘‘inherent states’’~defined as
the stable configurations in the potential energy landscape! of glassy systems and granular materials. We show
that at stationarity the inherent states are distributed according a generalized Gibbs measure obtained assuming
the validity of the principle of maximum entropy, under suitable constraints. In particular, we consider three
lattice models~a diluted spin glass, a monodisperse hard-sphere system under gravity, and a hard-sphere binary
mixture under gravity! undergoing a schematic ‘‘tap dynamics,’’ showing via Monte Carlo calculations that the
time averages of macroscopic quantities over the tap dynamics and over such a generalized distribution
coincide. We also discuss about the general validity of this approach to nonthermal systems.
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I. INTRODUCTION

There are many complex systems where thermal fluc
tions are small enough that the temperature of the exte
bath, Tbath , can be considered zero. Examples are sup
cooled liquids quenched at zero temperature in metast
states~blocked configurations!, called ‘‘inherent structures,’
which correspond to the local minima of the potential ene
in the particles configuration space@1–4#. Granular materials
@5# at rest are another important example of the system
zen@6# in mechanically stable microstates~blocked configu-
rations!, which by analogy with the glass terminology ca
also be called inherent states.

The issue we consider here, which recently raised con
erable interest, is to investigate the possibility to descr
these systems by using concepts from statistical mecha
as Edwards@7# suggested for granular media more than
years ago. His assumption was that, by gently shaking
system under the constraint of fixed volumeV, the distribu-
tion over the mechanically stable~blocked! states would be
uniform. This leads to the definition of a configurational e
tropy, S5 ln V, where V is the number of mechanicall
stable states corresponding to the fixed volumeV and energy
E, and to the concept of compactivity,X215] ln V/]V. In a
similar way one can also define a configurational tempe
ture,Tcon f

21 [bcon f5] ln V/]E.
Also in glasses, following, for example, the inhere

structure approach@1–4#, one can define a configuration
entropy associated to the number of inherent structures
responding to a fixed energyE, and consequently the con
figurational temperature. When the system is frozen at z
temperature in one of its inherent states it does not evo
anymore. However, one can explore the inherent struct
space essentially in two ways. One way is by quenching
system over and over from an equilibrium temperatureT to
zero temperature@1,3,4#. Using this procedure, Sciortin
et al. @3# found that in a supercooled glass forming liqui
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studied by molecular dynamics simulations, the configu
tional temperature numerically coincides with the equil
rium temperatureT, provided thatT is low enough.

Another way to visit the inherent structures is by lettin
the system aging in contact with an almost zero bath te
perature,Tbath . During the aging process an effective tem
peratureTdyn can be defined via the off-equilibrium exten
sion of the fluctuation-dissipation ratio@8#. It happens that in
mean field models@9# this effective temperature coincide
with the above configurational temperature. The possibi
to introduce an effective temperature for granular media
the extension of the fluctuation-dissipation relation, was s
gested in Ref.@10#.

The connection between Edwards’s approach for gran
media and the results in glass theory has been pointed o
Refs. @10–14#. In particular, in Ref.@11# it was shown that,
for a class of finite-dimensional systems, in the limitTbath

→0, Tdyn coincides in fact with the configurational temper
ture, predicted by the Edwards hypothesis.

In Refs. @13,14# the inherent states are visited in anoth
way by using a tap dynamics~i.e., a procedure similar to tha
used in the compaction of real granular materials!, where
each tap consists in raising the bath temperature to a v
TG and, after a lapse of timet0, quenching it back to zero
By cyclically repeating the process the system explores
space of the inherent states@13–20#. Once the stationary
state is reached one can define a temperature,Tf d , via the
equilibrium fluctuation-dissipation relation. One can then s
that, if Edwards’s assumption applies,Tf d coincides with the
configurational temperature. This has been verified in fact
different finite-dimensional models@13–15#. It was also
shown numerically that for low enoughTG one has thatTf d
5Tcon f.TG , confirming on lattice models for granular me
dia the result of Ref.@3#. In fact when the duration of eac
single tap is infinite (t0→`), the tap coincides with the way
to explore the inherent states implemented in molecular
namics simulations for Lennard-Jones mixtures@1,3#. How-
ever, the method used in Ref.@3# only allows the calculation
of Tcon f when the configurational temperature is low, i.
where all the different temperatures almost coincide. Ma

,
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FIERRO, NICODEMI, AND CONIGLIO PHYSICAL REVIEW E66, 061301 ~2002!
other studies confirming Edwards’s approach have also b
presented@16–18,21#.

In this paper we give a comprehensive view of the res
obtained in Refs.@13–15# by considering other models an
giving more details. In particular we study here three sc
matic lattice models for glassy systems and granular me
i.e., a diluted spin glass, a monodisperse hard-sphere sy
under gravity and a hard-sphere binary mixture under gr
ity. In particular, in the diluted spin glass and in the mon
disperse hard-sphere system under gravity, the asymp
states reached by the system are found to be described
by the configurational temperature. Whereas in the ha
sphere binary mixture under gravity the asymptotic states
found to be described by two thermodynamic parame
@22#, coinciding with the two configurational temperatur
that characterize the distribution among the inherent st
when the principle of maximum entropy is satisfied under
constraint that the energies of the two species are inde
dently fixed. In Ref.@15# a description of the segregatio
observed in the binary system in terms of these two temp
tures is also given.

In Secs. II A and II B, the frustrated lattice gas model a
the results of its study with the tap dynamics are, resp
tively, presented. In Sec. II D, the same results are obta
at higher density where the system at small tempera
reaches a quasistationary state in which one-time quant
decay as the logarithm of time. In Sec. II C Edwards’s h
pothesis is formulated using the principle of maximum e
tropy. The results obtained in the monodisperse hard-sp
system under gravity are shown in Sec. III. In Sec. IV t
statistical mechanics approach is extended to the hard-sp
binary mixture under gravity, where two thermodynamic p
rameters are necessary to describe the asymptotic s
reached by the system. Finally, in the Conclusions we dra
picture of the statistical mechanics approach to syste
found in inherent states, as emerges from our extensive
vestigation.

II. THE FRUSTRATED LATTICE GAS MODEL

A. The model

Recently a lattice model has been introduced to desc
glass formers@24–26# and, in the presence of gravity, gran
lar materials@19,27,28#. The Hamiltonian of the model is

2H5J(̂
i j &

~e i j SiSj21!ninj1m(
i

ni , ~1!

where the sum(^ i j & is over nearest neighbor sites,Si561
are Ising spins,ni50,1 are occupation variables,m is the
particle chemical potential, ande i j are quenched and rando
variables, equal to61 with equal probability. This mode
reproduces the Ising spin glass in the limitm→` ~i.e., when
all sites are occupied,ni[1).

In the other limit,J→`, the model describes a frustrate
lattice gas with properties recalling those of a ‘‘frustrate
liquid. In fact the first term of Hamiltonian~1! implies that
two nearest neighbor sites can be freely occupied onl
their spin variables satisfy the interaction, that is, ife i j SiSj
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51, otherwise they feel a strong repulsion. To make the c
nection with a liquid, we note that the internal degree
freedom,Si , may represent, for example, the internal orie
tation of a nonspherical particle. Two particles can be nea
neighbors only if the relative orientation is appropriate, o
erwise they have to move apart. Since in a frustrated loop
spins cannot satisfy all interactions, in this model parti
configurations in which a frustrated loop is fully occupie
are not allowed. The frustrated loops in the model are
same as the spin glass model and correspond in the liqu
those loops that, due to geometrical hindrance, canno
fully occupied by the particles. In three dimensions~3D!
@26,29#, the model has a maximum densityrmax.0.68, and a
transition atrc.0.62 where the nonlinear spin susceptibili
diverges.

In the present paper, the 3D cubic frustrated lattice
model withJ finite is considered. The value of particle de
sity, r5( ini /L3 (L is the lattice linear size!, is fixed, and a
Monte Carlo tap dynamics, which allows the system to e
plore its inherent states, is applied. During the dynamics,
system cyclically evolves for a timet0 ~the tap duration
@30#! at a finite value of the bath temperature,TG ~the tap
amplitude!, and afterwards it is suddenly frozen at zero te
perature in one of its inherent states~at zero temperature th
system does not evolve anymore if the energy cannot
decreased by one single-particle movement!. After each tap,
when the system is at rest, we record the quantities of in
est. The timet considered is therefore discrete and coincid
with the number of taps.

B. The results obtained under the tap dynamics

We first consider the caser50.65 @31#. At this value of
the density the system under the tap dynamics reaches a
tionary state for each value ofTG ~and t0) considered. In
Figs. 1 and 2@32#, the self-scattering two-time function

FIG. 1. The self-scattering two-time functionFq(t,tw)

5( ie
qW •[ rW i (t)2rW i (tw)] /rL3, with q5p/4, as a function oft2tw ~for

tw5104, 23104, 53104, 83104, 105) in the frustrated lattice gas
model for densityr50.65, during the tap dynamics, with tap am
plitude TG50.3 J and tap durationt051 MCS. The function
Fq(t,tw) only depends ont2tw , showing that the system ha
reached stationarity.
1-2
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THERMODYNAMICS AND STATISTICAL MECHANICS OF . . . PHYSICAL REVIEW E 66, 061301 ~2002!
Fq(t,tw)5( ie
qW •[ rW i (t)2rW i (tw)] /rL3 and the energyE(t) of the

inherent states, obtained forTG50.3 J andt051 MCS, are
shown. The curvesFq(t,tw), for differenttw , collapse onto a
single master function, when they are plotted as function
t2tw , and the energyE(t) reaches its time independe
asymptotic value, showing that the system has reached a
tionary state~our data are averaged up to 32 noise reali
tions; L58 andq5p/4).

During the tap dynamics, in the stationary state, the ti

average of the energyĒ, and its fluctuationsDE2̄ are calcu-

lated. In Figs. 3 and 4,Ē andDE2̄ are shown as functions th
tap amplitudeTG ~for several values of the tap duration,t0).
Apparently, TG is not the right thermodynamic paramete
since sequences of taps, with sameTG and differentt0, give

FIG. 2. EnergyE(t) of the inherent states as a function of th
tap numbert, in the frustrated lattice gas model during the t
dynamics with tap amplitudeTG50.3 J and tap durationt0

51 MCS. The lower curve, corresponding to a density of partic
r50.65, exponentially saturates to its asymptotic value, wher
the upper curve, corresponding tor50.75, shows a logarithmic
relaxation at long times.

FIG. 3. The time average of the energyĒ recorded in the sta-
tionary regime as a function of the tap amplitudeTG ~in units of J!,
in the frustrated lattice gas model forr50.65. The four different
curves correspond to different values of the tap duration,t0

51, 5, 10, ` MCS ~from bottom to top!. This shows thatTG is not
a right thermodynamic parameter, since sequences of taps with
ferentt0 give different values for the system observables.
06130
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different values ofĒ and DE2̄. On the other hand, if the
stationary states are indeed characterized by asinglethermo-
dynamic parameterb f d , the curves corresponding to diffe
ent tap sequences~i.e., differentTG andt0) should collapse

onto a single master function whenDE2̄ is parametrically

plotted as function ofĒ. This data collapse is in fact foun
and shown in Fig. 5. This is a prediction that can be ea
checked in real granular materials~where one can conside
the density, which is easier to measure than the energy!.

The thermodynamic parameterb f d is defined apart from
an integration constantb0, through the usual equilibrium
fluctuation-dissipation relation:

s
s

if-

FIG. 4. The time average of energy fluctuations,DE2̄, recorded
in the stationary regime as a function of the tap amplitude,TG ~in
units of J!, in the frustrated lattice gas model forr50.65. The four
different curves correspond to different values of the tap durat
t051, 5, 10, ` MCS ~from bottom to top!. This shows again tha
TG is not a right thermodynamic parameter.

FIG. 5. The time averages of energy fluctuations,DE2̄, when

plotted as functions of the time average of energy,Ē, collapse onto
a single master function, for all the different values of tap amplitu
and duration,TG and t0, plotted in Fig. 3. This shows that th
system stationary states are indeed characterized by asingle ther-
modynamic parameter, since the curves corresponding to diffe
tap sequences~i.e., differentTG andt0) collapse on a ‘‘universal’’

function, whenDE2̄ is parametrically plotted as a function ofĒ.
1-3
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2
]Ē

]b f d
5DE2̄. ~2!

By integrating Eq.~2!, b f d2b0 can be expressed as a fun
tion of Ē or ~for a fixed value oft0) of bG : b f d2b0
[g(bG). The constantb0 is determined as explained in de
tail in the Appendix.

C. The Edwards averages

In Sec. II B we have found that the fluctuations of t
energy in the stationary state depend only on the energyĒ,
and not on the past history. If all macroscopic quantit
depend only on the energyĒ, or on its conjugate thermody
namic parameterb f d , the stationary state can be genuine
considered a ‘‘thermodynamic state.’’ In this case one c
attempt to construct an equilibrium statistical mechanics
originally suggested by Edwards@7#.

More precisely, one can try to find from basic gene
principles what is the probability distributionPr of finding,
in the stationary regime, the system in the inherent stater of
energyEr ~see Ref.@13#!. We assume that the distribution
given by the principle of maximum entropy,S5
2( r Pr lnPr , under the condition that the average energy
fixed: E5( r PrEr . Thus, we have to maximize the follow
ing functional: I @Pr #52( r Pr lnPr2bconf(E2(rPrEr). Here
bcon f is a Lagrange multiplier determined by the constra
on the energy and takes the name of ‘‘inverse configuratio
temperature.’’ This procedure leads to the Gibbs result:

Pr5
e2bcon fEr

Z
, ~3!

whereZ5( re
2bcon fEr. Using standard statistical mechanic

it is easy to show that, in the thermodynamic limit, the e
tropy S andbcon f are also given by

S5 lnV~E!, bcon f5
] ln V

]E
, ~4!

whereV(E) is the number of inherent states correspond
to energyE.

If the distribution in the stationary state coincides w
Eq. ~3!, the time average of the energy,Ē(b f d), recorded
during the taps sequences, must coincide with the ensem
averagê E&(bcon f) over the distribution Eq.~3!. In order to
check that we have independently calculated the average^E&
as a function ofbcon f , we have simulated the model Eq.~1!
imposing that the only accessible states are the inhe
states, as done in Ref.@11#. The only difference is that in the
present paper the Edwards averages are done in the cano
ensemble, whereas in Ref.@11# these are done in the micro
canonical ensemble. In particular we have constructe
Hamiltonian, H8($Si ,ni%)5H($Si ,ni%)1d($Si ,ni%), by
adding a term to Eq.~1!, d($Si ,ni%), which is zero, if the
configuration is an inherent state, and infinite, otherwise. T
canonical distribution for this Hamiltonian gives a weig
e2bcon fH8, which coincides with the weight in the distribu
06130
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tion of Eq. ~3! for each accessible configuration. Using t
standard Monte Carlo simulations, we have calculated^E&
3(bcon f). Figure 6 outlines a very good agreement betwe

^E&(bcon f) and Ē(b f d) ~notice that there are no adjustab
parameters!.

Note that the maximum energy reached by the sys
under the tap dynamics,Emax(t0)[Ē(TG→`,t0), is less
than the maximum energy of the inherent states,^E&(Tcon f
→`), for every value oft0 considered. Such a prediction
which may have important practical consequences~e.g., in
powder, technologies!, is consistent with some experiment
observations on tapped granular materials@33#, where the
system density was shown to approach asymptotically a
teau value apparently higher than the minimal possible pa
ing density~obtained, for instance, by just pouring grains
the container! even for very large tap amplitudes.

Using Eq. ~4!, we have finally evaluated the configura
tional entropy asS(E)2S05*0

Ebcon f(E8)dE8 ~where the
unknown non-negative constantS0[S(E50) is the entropy
at Tcon f50). In Fig. 7, the configurational entropyS2S0 is
plotted as a function ofTcon f . We have also evaluated th
integral S8(E)2S08[*0

Eb f d(E8)dE8. In Fig. 7, S82S08 is
plotted as a function ofTf d and it is compared with the
configurational entropy. The agreement is again very goo

D. Quasistationary case

We have also studied the frustrated lattice gas model
r50.75. Differently from the previous case, for sma
enough values of the tap amplitudeTG , the system does no
reach a stationary state during our observation time. In F
2, the energyE(t) of the inherent states obtained forTG

50.3 J andt051 MCS is shown.E(t) now changes in time
and the system is not in a stationary state; however,E(t) at
long times decays very slowly@34#. In this regime the time

FIG. 6. The time averageĒ calculated in the stationary regim
of the tap dynamics and the ensemble average over the Edw
distribution Eq.~3!, ^E& ~the black empty circles!, are plotted, re-
spectively, as functions ofTf d and Tcon f ~in units of J!, in the
frustrated lattice gas model, atr50.65. The two independently
calculated sets of points show a very good agreement, outlining
success of Edwards’s approach to describe the system macros
properties.
1-4
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averages are computed over a time interval such that
energy is practically constant@in the case of Fig. 2, the time
average is performed over the time interval (33105,3
31051104)]. Performing the same procedure described
the stationary case, a collapse of data is again found~see Fig.
8!.

We have again evaluated the configurational entro
S(E)2S05*Emin

E bcon f(E8)dE8 @where the unknown non

negative constantS0[S(Emin) is the entropy atTcon f50
andEmin is the minimum value of energy obtained@35#!. In
Fig. 9, the configurational entropyS2S0 is plotted as a func-
tion of Tcon f . We have also evaluated the integralS8(E)
2S08[*0

Eb f d(E8)dE8. In Fig. 9,S82S08 is plotted as a func-
tion of Tf d and it is compared with the configurational e
tropy. The agreement is again very good.

We cannot exclude that the agreement here found even
low energy may be due to the fact that the system, whic

FIG. 7. The configurational entropyS2S0 ~the black empty
circles in the figure! as a function ofTcon f ~in units of J!, compared
with S8(E)2S08[*0

Eb f d(E8)dE8 plotted as a function ofTf d ~in
units of J!, in the frustrated lattice gas model forr50.65. The
unknown non-negative constantS0 is the entropy atTcon f50.

FIG. 8. The time averageĒ and the ensemble average over t
distribution Eq.~3!, ^E& ~the black empty circles!, plotted, respec-
tively, as functions ofTf d andTcon f ~in units of J!, in the frustrated
lattice gas model, atr50.75. As well as atr50.65, there is a very
good agreement between the two independently calculated se
points.
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III. A MONODISPERSE HARD-SPHERE SYSTEM
UNDER GRAVITY

As a model more appropriate for granular media, we ha
also studied a system of monodisperse hard sphere~with di-
ametera051) under gravity, where the centers of mass
grains are constrained to move on the sites of a cubic lat
~see upper inset in Fig. 11!. The Hamiltonian of the system i

H5Hhc~$ni%!1gm(
i

nizi , ~5!

where the height of sitei is zi , g51 is the gravity accelera
tion, m51 is the grains mass,ni is the usual occupancy
variable, andHhc($ni%) is the hard-core term preventing th

FIG. 10. The density self-overlap functionQ and ~upper inset!
the system density on the bottom layer,rb , plotted as functions of
Tf d ~in unitsmga0), compared with the ensemble averages over
distribution Eq.~3! ~the black empty circles!, plotted as a function
of Tcon f ~in units mga0), in the 3D monodisperse hard-sphere sy
tem under gravity. Also, for this system, there is a very good agr
ment between the independently calculated time averages ove
tap dynamics and the statistical mechanics ensemble averages
manner of Edwards.
of

FIG. 9. The configurational entropyS2S0 ~the black empty
circles in the figure! as a function ofTcon f ~in units of J!, compared
with S8(E)2S08[*0

Eb f d(E8)dE8 plotted as a function ofTf d ~in
units of J!, in the frustrated lattice gas model forr50.75. The
unknown non-negative constantS0 is the entropy atTcon f50.
1-5
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FIERRO, NICODEMI, AND CONIGLIO PHYSICAL REVIEW E66, 061301 ~2002!
overlapping of nearest neighbor grains@the analogy with Eq.
~1! can be appreciated by writing downHhc : it can be writ-
ten as Hhc($ni%)5J(^ i j &ninj , where the limit J→` is
taken#.

We have considered a system ofN5240 particles, and
performed a tap dynamics that allows the system to exp
its inherent states. We have considered three different va
of the tap duration,t05500, 10, 5 MCS. In this case, w
again obtain that the asymptotic states reached by the sy
can be described by a single thermodynamic parameterb f d
evaluated by the integration of Eq.~2!. We have moreover
calculated the system density on the bottom layer,rb , and
the density self-overlap functionQ, and verified that, when
plotted as a function ofb f d , they scale on a single maste
function ~see Fig. 10!.

As described in Sec. II C, we have calculated the Edwa
averages as functions ofbcon f . As we can see in Fig. 11, w
obtain a very good agreement between^E&(bcon f) and
Ē(b f d). The same agreement is found for the other quo
observables,rb andQ ~see Fig. 10!.

IV. A HARD-SPHERE BINARY MIXTURE
UNDER GRAVITY

Finally we consider a hard-sphere binary system mad
two species 1~small! and 2~large! with grain diametersa0

and A2a0, under gravity on a cubic lattice of spacinga0
51. We set the units such that the two kinds of grains h
massesm151 andm252, and the gravity acceleration isg
51. The hard-core potentialHhc is such that two large near
est neighbor particles cannot overlap. This implies that o
couples of small particles can be nearest neighbors on
lattice. The overall system Hamiltonian is

H5Hhc1m1gH11m2gH2 , ~6!

FIG. 11. Main frame: The time averageĒ and the ensemble
average over the distribution Eq.~3!, ^E& ~the black empty circles!,
plotted, respectively, as functions ofTf d andTcon f ~in unitsmga0),
in the 3D monodisperse hard-sphere system under gravity desc
in the text ~and schematically depicted in the upper inset!. Time
averages over the tap dynamics and Edwards’s ensemble ave
then coincide. Lower inset: The temperatureTf d[b f d

21 defined by
Eq. ~2! as a function of TG ~in units mga0) for t0

5500, 10, 5 MCS~from top to bottom!. The straight line is the
function Tf d5TG .
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whereH15( i
(1)zi andH25( i

(2)zi , the height of sitei is zi

and the two sums are over all particles of species 1 an
respectively. In the above units, the gravitational energie
a given configuration are thusE15H1 andE252H2.

Grains are confined to a box of linear sizeL between hard
walls and periodic boundary conditions in the horizontal
rections.N15120 grains of type 1 andN2540 grains of type
2 are initially prepared in a random loose stable pack. Un
the tap dynamics, the system approaches a stationary
for each value of the tap parametersTG andt0. In Fig.12, we
plot as a function ofTG ~for several values oft0) the
asymptotic value of thevertical segregation parameter, i.e
the difference of the average heights of the small and la
grains at stationarity,Dh(TG ,t0)[h12h2. Hereh1 and h2
are the averages ofH1 /N1 andH2 /N2 over the tap dynamics
in the stationary state.~An interpretation, in terms of the
approach here presented, of the size segregation phen
enon here found and experimentally observed in a ha
spheres binary mixture under gravity is given in Ref.@15#!.

The results given in the main panel of Fig. 12 apparen
show thatTG is not a right thermodynamic parameter, sin
sequences of taps with differentt0 give different values for
the system observables. However, if the stationary states
responding to different tap dynamics~i.e., differentTG and
t0) are indeed characterized by a single thermodynamic
rameter, the curves of Fig. 12 should collapse onto a univ
sal master function whenDh(TG ,t0) is parametrically plot-
ted as a function of another macroscopic observable suc
the average energy,e(TG ,t0)5(E11E2)/N (N is the total
number of particles!. This collapse of data is clearly not ob
served here, as is apparent in the inset of Fig. 12. We sh
instead, that two macroscopic quantities may be sufficien
characterize uniquely the stationary state of the syst
These two quantities are, for instance, the energye and the
height difference Dh. Of course, sincee5ah112bh2

ed

ges

FIG. 12. Main frame: The difference of the average heights
small and large grains,Dh5h12h2, measured at stationarity in th
binary hard-spheres mixture under gravity, is plotted as a func
of tap amplitudeTG ~in units mga0). The three sets of points cor
respond to the shown tap durationst0. At high TG larger grains are
found above the smaller, i.e,Dh,0, as in the Brazil nut effect
~BNE!. Below aTG* (t0) the opposite is found~reverse Brazil nut
effect, RBNE!. Inset: TheDh data of the main frame are plotted a
a function of the corresponding average energye. The three sets of
data do not collapse onto a single master function, showing th
single macroscopic observable, such ase, does not characterize th
system status.
1-6
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~wherea5N1 /N and b5N2 /N) and Dh5h12h2, we can
also chooseh1 and h2 to characterize the stationary stat
Namely, we show that any macroscopic quantityA, averaged
over the tap dynamics in the stationary state, is only dep
dent onh1 andh2, i.e.,A5A(h1 ,h2). We have checked tha
this is the case for several independent observables, suc
the number of contacts between large particles,Nc , the den-
sity of small and large particles on the bottom layer,r1

b and
r2

b , and others. In particular, as shown in Figs. 13 and 14,
find with good approximation thatNc.Nc(e)5Nc(ah1

1bh2), r2
b.r2

b(h2), r1
b.r1

b(h1). Therefore we need both
h1 and h2 to characterize unambiguously the state of
system; namely, all the observables assume the same v
in a stationary state characterized by the same values oh1
and h2, independently on the previous history~i.e., in our
case independently on the particular tapping parametersTG

andt0).
We again find that the stationary state can be genuin

considered as a thermodynamic state. Therefore we can
what is the probability distributionPr of finding the system
in the inherent stater corresponding to an energyE1r for the

FIG. 13. The average density of small grains on the box bot
layer, r1

b , measured at stationarity as a function of the height
small particles,h1, in the binary hard-spheres mixture under gra
ity. Data corresponding to differentTG andt0 approximately scale
on a single master function. The empty circles are the corresp
ing values obtained by ensemble average with the two tempera
Gibbs measure proposed in the text.

FIG. 14. Main frame: The average density of large grains on
box bottom layer,r2

b , obtained for differentTG andt0, scale almost
on a single master function when plotted as a function of the la
grains height,h2. Upper inset: The average number of conta
between large grains per particle,Nc , obtained for differentTG and
t0, scale on a single master function when plotted as a functio
the system energye.
06130
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small particles andE2r for the large particles. We again as
sume that the microscopic distribution is given by the pr
ciple of maximum entropyS52( r Pr lnPr , now under the
condition that the average energyE15( r PrE1r and E2
5( r PrE2r are independently fixed. This can be done
introducing two Lagrange multipliersb1 andb2, which are
determined by the constraint onE1 and E2, and can be,
respectively, considered as the ‘‘inverse configurational te
perature’’ of species 1 and 2. This procedure leads to
Gibbs result,

Pr5
e2b1E1r2b2E2r

Z
, ~7!

whereZ5( rexp(2b1E1r2b2E2r) and, in the thermodynamic
limit, the entropyS is given by

S5 ln V~E1 ,E2!, ~8!

andb1 andb2:

b15
] ln V~E1 ,E2!

]E1
, b25

] ln V~E1 ,E2!

]E2
. ~9!

HereV(E1 ,E2) is the number of inherent states correspon
ing to energyE1 andE2. The hypothesis that the ensemb
distribution at stationarity is given by Eq.~7! can be tested as
follows. We have to check that the time average of any qu
tity A(h1 ,h2), as recorded during the taps sequences i
stationary state characterized by given valuesh1 and h2,
must coincide with the ensemble average^A&(h1 ,h2) over
the distribution Eq.~7!. To this aim, we have calculated th
ensemble averages^Nc&, ^r2

b&, ^r1
b& for different values of

b1 and b2; we have expressed parametrically^Nc&, ^r2
b&,

^r1
b& as functions of the average ofh1 andh2, and compared

them with the corresponding quantitiesNc , r1
b , andr2

b av-
eraged over the tap dynamics. The two sets of data are p
ted in Figs. 13 and 14 showing a good agreement~notice,
there are no adjustable parameters!. In order to calculate the
ensemble averages we simulate the model withH from Eq.
~6! where we impose the constraint that the only access
states are the inherent states, as already describe
Sec. II C.

V. CONCLUSIONS

In conclusion, in the context of models for glasses a
granular materials, we have shown that the stationary~or
quasi-stationary! state reached by the system subject to a
dynamics among its inherent states is genuinely a thermo
namic state, which can be well described by Edwards’s
sumption of a uniform measure, i.e., a probability distrib
tion obtained assuming the validity of the principle
maximum entropy. In particular in the frustrated lattice g
model and in the system of monodisperse hard-spheres u
gravity, we have found that the observables recorded du
different tap sequences~different amplitude and duration o
taps! fall on universal master curves when plotted as a fu
tion of a single thermodynamic parameter. These curves
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out to coincide with those predicted, within the describ
statistical mechanics approach, by the generalized Gibbs
tribution of Eq.~3!. On the other hand, the results obtained
a system under gravity made of particles of two differe
sizes show that a single thermodynamic parameter is
enough to describe the macrostates, and two configurati
temperatures are instead necessary. In general, for a
complex system one might expect more constraints to
imposed, leading to more than two thermodynamical para
eters@15,18,23#. In practice, the criteria to determinea priori
the required parameters cannot be easily accessible. H
ever, more recently we have extended data regarding
hard-sphere binary mixture for very low energy@36# and
found that only one thermodynamical parameter is neces
to describe the stationary state. This seems to be a ge
feature@14#. If this is the case, a statistical mechanics a
proach with only one thermodynamical variable may be f
sible for low energy.
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APPENDIX: DETERMINATION OF THE INTEGRATION
CONSTANT b0

Adapting to lattice models the procedure of Sciorti
et al. @3#, we have evaluatedb f d at small values ofTG , for
t0→`, and consequently the integration constantb0.

Given an inherent stater of energyEr we define the basin
of attraction,Br , of such stater as the set of states in th
configurational space, which after the quench atT50 are

FIG. 15. The curves ln@P(E,TG)#1E/TG ~apart from a
TG-dependent constant! as functions of the energyE in the frus-
trated lattice gas model forr50.65 andTG50.275, 0.425, 0.475
0.525 J.
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frozen in the inherent stater. Therefore the probability dis-
tribution Pr of finding the system in the inherent stater after
quenching the system from an equilibrium state at tempe
ture TG , can be written as

Pr5

(
r 8

e2Err 8 /TG

ZG~TG!
, ~A1!

whereZG(TG) is the partition function of the system in equ
librium at temperatureTG and ( r 8 is the sum over all the
statesr 8 belonging to the basinBr of energyErr 8 . By put-
ting Err 85Er1D rr 8 , the distribution~A1! can be written as

Pr5
e2(Er1gr (TG))/TG

ZG~TG!
, ~A2!

wheree2gr (TG)/TG5( r 8e
2Drr 8 /TG. From Eq.~A2! it follows

that the probability of finding the system in any inhere
state of energyE, P(E,TG)5( r Pr ~where ( r is the sum
over all the inherent statesr of energyE), is given by

P~E,TG!5
V~E!e2E/TGe2 f (TG ,E)/TG

ZG~TG!
, ~A3!

whereV(E) is the number of inherent states of energyE and

e2 f (TG ,E)/TG5

(
r

e2gr (TG)/TG

V~E!
.

From Eq.~A3!,

ln@P~E,TG!#1
E

TG
52

f ~TG ,E!

TG
1 ln@V~E!#2 ln@ZG~TG!#.

~A4!

The probability distribution of finding the system in any in
herent state of energyE, P(E,TG), is measured during the

FIG. 16. The curvebG2g(bG)5bG2@b f d(bG)2b0# as a
function ofbG

21 ~in units of J! in the frustrated lattice gas model fo
r50.65. The limit bG

21→0 of bG2g(bG) gives the integration
constantb0.
1-8
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tap dynamics with amplitudet0→`. If f (TG ,E) has only a
weak dependence onE, then it is possible to superimpose th
curves, ln@P(E,TG)#1E/TG , at differentTG which overlap in
E by adding aTG-dependent constant. This result is obtain
for TG<0.525, as shown in Fig. 15, and suggests that in
interval f (TG ,E). f (TG). If this is the case, from Eq.~A3! it
follows

P~E,TG!.
V~E!e2E/TG

Z~TG!
, ~A5!

where
ur

hy

an
-

em

d

v.

.

0.

06130
d
is

Z~TG!5ef (TG)/TGZG~TG!5(
E

V~E!e2E/TG. ~A6!

The last equality stems from the normalization condition
P(E,TG).

From Eq.~A5! it follows that at smallTG , bG[TG
21 sat-

isfies Eq.~2!. Therefore at smallTG , b f d and bG coincide.
The constantb0 is consequently obtained as the limit, fo
TG→0, of the functionbG2g(bG) ~see Fig. 16!.
E

ic

ef.

.

g
-
co
l-

n,

n,

ow
the

kly
l

@1# F.H. Stillinger and T.A. Weber, Phys. Rev. A25, 978 ~1982!;
Science 225, 983 ~1984!; F.H. Stillinger, ibid. 267, 1935
~1995!; S. Sastry, P.G. Debenedetti, and F.H. Stillinger, Nat
~London! 393, 554 ~1998!.

@2# B. Coluzzi, G. Parisi, and P. Verrocchio, Phys. Rev. Lett.84,
306 ~2000!.

@3# F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett.83,
3214 ~1999!.

@4# W. Kob, F. Sciortino, and P. Tartaglia, Europhys. Lett.49, 590
~2000!; F. Sciortino and P. Tartaglia, Phys. Rev. Lett.86, 107
~2001!.

@5# H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod. P
68, 1259~1996!.

@6# Grains are ‘‘frozen’’ because, due to their large masses
dissipation@5#, the thermal kinetic energy is negligible com
pared to the gravitational energy; thus the external bath t
peratureTbath can be considered equal to zero.

@7# S.F. Edwards and R.B.S. Oakeshott, Physica A157, 1080
~1989!; A. Mehta and S.F. Edwards,ibid. 157, 1091~1989!; S.
F. Edwards,Disorder in Condensed Matter Physics~Oxford
Science, Oxford, 1991!, p. 148; inGranular Matter: An Inter-
disciplinary Approach,edited by A. Mehta~Springer-Verlag,
New York, 1994!.

@8# L.F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E55,
3898 ~1997!.

@9# R. Monasson, Phys. Rev. Lett.75, 2847 ~1995!; Th.M. Nieu-
wenhuizen, Phys. Rev. E61, 267 ~2000!; S. Franz and M.A.
Virasoro, J. Phys. A33, 891~2000!; A. Crisanti and F. Ritort, J.
Chem. Phys. 113, 10 615 ~2000!; J. Kurchan,
cond-mat/9812347; inJamming and Rheology: Constraine
Dynamics on Microscopic and Macroscopic Scales,edited by
A. J. Liu and S. R. Nagel~Taylor & Francis, London, 2001!.

@10# M. Nicodemi, Phys. Rev. Lett.82, 3734~1999!.
@11# A. Barrat, J. Kurchan, V. Loreto, and M. Sellitto, Phys. Re

Lett. 85, 5034~2000!; Phys. Rev. E63, 051301~2001!.
@12# H.A. Makse and J. Kurchan, Nature~London! 415, 614~2002!.
@13# A. Coniglio and M. Nicodemi, Physica A296, 451 ~2001!.
@14# A. Coniglio, A. Fierro, and M. Nicodemi, Physica A302, 193

~2001!; A. Fierro, M. Nicodemi, and A. Coniglio, Europhys
Lett. 59, 642~2002!; A. Coniglio, A. Fierro, and M. Nicodemi,
Eur. Phys. Jour. E~to be published!.

@15# M. Nicodemi, A. Fierro, and A. Coniglio, cond-mat/020250
@16# J.J. Brey, A. Prados, and B. Sa´nchez-Rey, Physica A275, 310
e

s.

d

-

~2000!; A. Prados, J.J. Brey, and B. Sa´nchez-Rey,ibid. 284,
277 ~2000!.

@17# D.S. Dean and A. Lefe`vre, Phys. Rev. Lett.86, 5639~2001!; J.
Phys. A34, L213 ~2001!; cond-mat/0106220.

@18# J. Berg, S. Franz, and M. Sellitto, Eur. Phys. J. B26, 349
~2002!.

@19# M. Nicodemi, A. Coniglio, and H.J. Herrmann, Phys. Rev.
55, 3962~1997!; J. Phys. A30, L379 ~1997!; A. Coniglio and
H.J. Herrmann, Physica A225, 1 ~1996!.

@20# J. Berg and A. Mehta, Europhys. Lett.56, 784 ~2001!.
@21# L. Berthier, L.F. Cugliandolo, and J.L. Iguain, Phys. Rev. E63,

051302~2001!.
@22# The possibility of introducing more than one thermodynam

parameter has been also suggested in Ref.@18# and recently
discussed in the context of a Constrained Ising Chain in R
@23#.
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